fccjxxw.com
非常超级学习网 学习超级帮手
当前位置:首页 >> 数学 >>

四川省成都市树德协进中学2018-2019学年高一上学期10月段考数学试卷 Word版含解析

四川省成都市树德协进中学 2018-2019 学年高一上学期 10 月段 考数学试卷 最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。最新试卷 多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的 代号填在题后的括号内(每小题 5 分,共 50 分) . 1.设集合 A={1,2},则满足 A∪B={1,2,3}的集合 B 的个数是() A.1 B. 3 C. 4 D.8 2.下列各组中的两个函数是同一函数的为() (1)y= (2)y= (3)y=|x|,y= (4)y=x,y= ,y= ; ; 2 ,y=x﹣5; ; (5)y=(2x﹣5) ,y=|2x﹣5|. A.(1) , (2) B.(2) , (3) 3.在区间(﹣∞,0)上为增函数的是() A.y=1 B. C.(3) , (5) D.(3) , ( 4) C.y=﹣x ﹣2x﹣1 2 D.y=1+x 2 4.函数 y=x +bx+c 当 x∈(﹣∞,1)时是单调函数,则 b 的取值范围() A.b≥﹣2 B . b≤ ﹣2 C.b>﹣2 D.b<﹣2 5.图中(1) (2) (3) (4)四个图象各表示两个变量 x,y 的对应关系,其中表示 y 是 x 的 函数关系的有() 2 A.(1) (2) 6.函数 y= A.[﹣1,0) B.(2) (3) C.(1) (3) D.(2) (4) (a<0 且 a 为常数)在区间(﹣∞,1]上有意义,则实数 a 的取值范围() B.(﹣1,0) C.[﹣1,0] D.(﹣1,+∞) 7.已知 f(x)= A.1 2 ,则 f(f(1) )=() B. 2 C. 3 D.4 8.y=|x ﹣2x﹣3|与 y=k 有 4 个不同的交点,则 k 的范围() A.(﹣4,0) B.[0,4] C.[0,4) D.(0,4) 9.集合 A={a,b,c}与 B={﹣1,0,1},映射 f:A→B,且有 f(a)+f(b)+f(c)=0, 则满足这样的映射 f 的个数为() A.9 B. 8 C. 7 D.6 10. 设函数 y=f (x) 在 R 上有意义, 对给定正数 M, 定义函数 fM (x) = 2 , 则称函数 fM(x)为 f(x)的“孪生函数”,若给定函数 f(x)=2﹣x ,M=1,则 y=fM(x) 的值域为() A.[1,2] B.[﹣1,2] C.(﹣∞,2] D.(﹣∞,1] 二、填空题:请把答案填在题中横线上(每小题 5 分,共 25 分). 11.函数 的定义域是. 12.不等式 ax +ax+1>0 对任意实数 x 都成立,则 a 的范围用区间表示为. 13.函数 y=﹣x ,x∈[﹣2,1],单调递减区间为,最大值为,最小值为. 14.设 A={x|x +4x=0},B={x|x +2(a+1)x+a ﹣1=0},其中 x∈R,如果 A∩B=B,则实数 a 的取值范围. 15.规定:min{a,b,c}为 a,b,c 中的最小者,设函数 f(x)=min{f1(x) ,f2(x) ,f3(x)}; 其中 f1(x)=4x+1,f2(x)=x+2,f3(x)=﹣2x+4,则 f(x)的最大值为. 2 2 2 2 2 三、解答题(请写清楚过程) 16.已知全集 U=R,集合 A={x|0<x≤5},B={x|x<﹣3 或 x>1},C={x|[x﹣(a﹣1)][x﹣ (a+1)]<0,a∈R}. (1)求 A∩B, (?UA)∩(?UB) ,?U(A∩B) ; (2)若(?RA)∩C=?,求 a 的取值范围. 17.如图所示折线段 ABC,其中 A、B、C 的坐标分别为(0,4) , (2,0) , (6,4) . (1)若一抛物线 g(x)恰好过 A,B,C 三点,求 g(x)的解析式. (2)函数 f(x)的图象刚好是折线段 ABC,求 f(f(0) )的值和函数 f(x)的解析式. 18. (1)已知函数 f(x)定义域为(﹣2,2) ,g(x)=f(x+1)+f(3﹣2x) ,求 g(x)的 定义域; (2)若 f(﹣2x)+2f(2x)=3x﹣2,求 f(x)解析式. 19.已知函数 f(x)= (1)求函数的单调区间 (2)当 m∈(﹣2,2)时,有 f(﹣2m+3)>f(m ) ,求 m 的范围. 20.已知函数 f(x)对任意 x、y∈R,都有 f(x)+f(y)=f(x+y) ,f(1)=﹣2 且当 x>0 时,都有 f(x)<0. (1)求 f(0)+f(1)+f(2)+…+f(100) ; (2)求证:f(x)在 R 上单调递减. 22.已知函数 f(x)=x +1,且 g(x)=f[f(x)],G(x)=g(x)﹣λf(x) , (1)试问是否存在实数 λ,使得 G(x)在(﹣∞,﹣1]上为减函数,并且在(﹣1,0)上 为增函数,若不存在,理由. (2)当 x∈[﹣1,1]时,求 G(x)的最小值 h(λ) . 2 2 . 四川省成都市树德协进中学 2018-2019 学年高一上学期 10 月段考数学试卷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的 代号填在题后的括号内(每小题 5 分,共 50 分) . 1.设集合 A={1,2},则满足 A∪B={1,2,3}的集合 B 的个数是() A.1 B. 3 C. 4 D.8 考点: 并集及其运算. 分析: 根据题意,分析可得,该问题可转化为求集合 A={1,2}的子集个数问题,再由集 合的元素数目与子集数目的关系可得答案. 解答: 解:A={1,2},A∪B={

更多相关文章:

非常超级学习网 fccjxxw.com

copyright ©right 2010-2021。
非常超级学习网内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图