fccjxxw.com
非常超级学习网 学习超级帮手
当前位置:首页 >> 数学 >>

【期末试卷】江西省九江第一中学2017-2018学年高二下学期期末考试数学(文)试题Word版含答案

九江一中 2017——2018 学年下学期期末考试 高二数学(文科)试卷 考试时间:120 分钟 总分:150 分 第Ⅰ卷(选择题 60 分) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. 1 已知复数 z ? A.第一象限 2?i ,则 z 所对应的点在复平面内所在的象限是( 1? i B.第二象限 C.第三象限 ) D.第四象限 2 2 已知集合 A ? x | x ? 4 x ? 5 ? 0 , B ? ??2, ?1,0,1,2? ,则 A ? ? B= ( D. ) A. ? ?2,5? B. [?1, 2] C. ??1,0,1, 2? ) ??2, ?1,0,1, 2,3, 4,5? 3 函数 y ? x2 cos x 的部分图象可以为( 4. 已知等差数列 ?an ? 满足 a5 ? 9, a10 ? 19 ,则 a2018 ? ( A.4031 5. 已知双曲线 大值是 ( A. ) B. 3 ) D. 4037 B.4033 C.4035 x2 y 2 b ? 2 ? 1(a ? 0, b ? 0) 的一条渐近线斜率是 1, 离心率是 e , 则 2 的最 2 a ? e2 a b 2 2 4 2 C. 3 D. 3 4 6 设函数 f ( x) ? x ? (a ? 1) x ? 2ax (a ? R) ,若 f ( x ) 为奇函数,则曲线 y ? f ( x) 在点 (0,0) 处的切线方程为( A. y ? ?2 x ) B. y ? ? x C. y ? 2 x D. y ? x 7 已知函数 y ? sin ? ? x ? 称,则 ? 的最小正值为( A. 1 ? ? ?? ? (? ? 0) 图像向右平移 个单位后,所得函数图像关于 y 轴对 3? 3 ) B. 2 C. ? 5 2 D. 3 8 在 ?ABC 中,若 AD ? 2DB , CE ? 5 1 CA ? CB 6 3 2 1 C. EA ? CA ? CB 3 6 A. EA ? 1 CD ,则( ) 2 5 1 B. EA ? CA ? CB 6 3 2 1 D. EA ? CA ? CB 3 6 ) ?x ? y ? 5 ? 0 ? 9 已知实数 x, y 满足 ?2 x ? y ? 1 ? 0 ,则目标函数 z ? 2 x ? y 的最大值是( ?x ? 2 y ?1 ? 0 ? A.6 B.7 C.8 D. 9 AB ? 2 , AC1 ? B1C ,则该长方体的外 10 在体积为 6 的长方体 ABCD ? A 1B 1C1D 1 中,已知 接球表面积为( ) A. 14? B. 12? C. 10? D. 8? 11 已知角 ? 的顶点为坐标原点, 始边与 x 轴的非负半轴重合, 终边上有两点 A(3, a), B(4, b) , 且角 ? 终边不在直线 y ? x 上,若 cos 2? ? 1 1 sin 2? ? ,则 | a ? b |? ( ) 2 2 D. A.1 B. 1 5 C. 1 3 1 2 12 设函数 f ( x ) ? ? ?2 x , x ? 0 ?1, x ? 0 ,则满足 f ( x ? 1) ? f (2 x) 的 x 的取值范围是( ) A. (1, ??) B. [1, ??) C. [0, ??) D. (0, ??) 二、填空题:本大题共 4 小题,每小题 5 分,共 20 分. 13.函数 f ( x) ? log 2 ( x 2 ? 5) ,则 f (3) ? 14.已知 ?ABC 中, AC ? 4, BC ? 3 ,角 C 的内角平分线交 AB 于点 D ,且 CD ? 12 2 ,则 7 AB ? 15.已知函数 f ( x) ? x ? a cos x (a ? R) 在 R 上为单调递增函数,则 a 的取值范围是 16.已知圆 C : x2 ? y 2 ? 2 y ? 3 ? 0 ,直线 y ? ax ? 2 与圆 C 交于 A, B 两点, O 为坐标原点, 则 SOAB 的最大值是 第Ⅱ卷(非选择题 90 分) 三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分 12 分) 已知数列 ?an ? 满足 a1 ? a a 1 1 , n ?1 ? n ? (n ? N * ) . 2 n ? 1 n ? 2 (n ? 1)(n ? 2) (1)求数列 ?an ? 的通项公式 (2)设 Tn ? a1 ? a2 ??? an ,证明 1 1 ? Tn ? n?2 2 18.(本小题满分 12 分) 每年 6,7 月份是大学生就业的高峰期,国内某家顶尖科技公司在计算机专业毕业生中有很高 的吸引力,该公司今年计划从某名牌大学计算机专业招 20 名收毕业生,经过面试,笔试和综 合测试,一共录用了 14 名男生和 6 名女生,这 20 名毕业生的测试成绩如茎叶图所示(单位: 分).该公司规定:成绩在 180 分以上者到“研发部门”工作;180 分以下者到“生产部门” 工作. (1)求男生成绩的中位数及女生成绩的平均值; (2)如果用分层抽样的方法从“研发部门”人选和“生产部门”人选中共选取 5 人,再从这 5 人中选 2 人,那么至少有一人是“研发部门”人选的概率是多 少? 19. (本小题满分 12 分) 已知三棱锥 P ? ABC 中, PA ? PB ? PC ? 1 , AB ? BC ? CA ? 2 , (1)证明面 PAB ? 面 PBC (2)若 M , N 分别为 AB 和 PC 的中点,求异面直线 PM 和 BN 夹角的余弦值 20.(本小题满分 12 分)已知抛物线 C

更多相关文章:

非常超级学习网 fccjxxw.com

copyright ©right 2010-2021。
非常超级学习网内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图