fccjxxw.com
非常超级学习网 学习超级帮手
当前位置:首页 >> 数学 >>

2016-2017学年甘肃省武威第二中学高二下学期期末考试数学(理)试题(解析版)

2016-2017 学年甘肃省武威第二中学高二下学期期末考试数 学(理)试题 一、选择题 1.已知 ,下列命题正确的是( ) A. 若 C. 若 ,则 ,则 B. 若 D. 若 ,则 ,则 【答案】D 【解析】 试题分析: 若 。 则 A,B 都不正确; 若 , 则 C 不正确, D中 【考点】不等式性质 2.一名老师和两名男生两名女生站成一排照相,要求两名女生必须站在一起且老师不 站在两端,则不同站法的种数为( ). A. 8 B. 12 C. 16 D. 24 【答案】D 【解析】试题分析:将两名好生捆绑在一起,站成一排,共有不同站法 老师站在一边的共有 .故选 D. 【考点】排列组合. 3. 展开式中不含 项的系数的和为( ) C. 1 D. 2 ,其是 ,两名女生必须站在一起且老师不站在两端的站法共有 A. -1 B. 0 【答案】B 【解析】 试题分析: 由二项式定理知, 得,此二项展开式的各项系数和为 展开式中最后一项含 , 其系数为 1, 令 =1 =1,故不含 项的系数和为 1-1=0,故选 B. 【考点】二项展开式各项系数和;二项展开式的通项 4.已知离散型随机变量 的分布列为 1 2 3 第 1 页 共 10 页 则 的数学期望 ( ) A. B. C. D. 3 【答案】A 【解析】 根据数学期望的公式可得, 随机变量 的期望为 故选 A. 5.已知 与 之间的一组数据(表一) : 0 1 1 3 2 5 3 7 , 则 对 的线性回归方程为 A. 【答案】C B. C. 必过点( ) D. 【解析】回归直线方程过样本中心点 ,其中 ) . 6.已知随机变量 的分布列如下,则 的值是( 0 1 A. 0 B. C. D. 【答案】D 【解析】 根据随机变量分布列的性质可知, 7.已知随机变量 服从正态分布 A. 6 B. 7 【答案】B C. 8 D. 9 ,且 ,故选 D. ,则 的值为( ) 【解析】 由题意得,随机变量 服从正态分布 ,所以图象关于 对称, 又因为 ,所以 ,解得 第 2 页 共 10 页 ,故选 B. 8.某公司在 2012-2016 年的收入与支出情况如下表所示: 收入 (亿元) 支出 (亿元) 根据表中数据可得回归直线方程为 为 亿元时的支出为 ( A. , 依此估计如果 2017 年该公司收入 ) C. 亿元 B. 亿元 亿元 D. 亿元 【答案】B 【解析】 线方程, 时,支出为 ,解得: 亿元,故选 B. , ,所以回归直线方程为: ,代入回归直 ,当 9.直线 A. 【答案】D B. ,( 为参数)上与点 或 C. 的距离等于 D. 或 的点的坐标是( ) 【解析】 因为直线 所以设海鲜上点 则 为参数) , 的距离等于 ,解得 , 或 ,故选 D. 的点的坐标是 , 代入直线的参数方程,得点的坐标为 10.方程 A. 一条直线 【答案】B ( 为参数)表示的曲线是( ) B. 两条射线 C. 一条线段 D. 抛物线的一部分 【解析】试题分析:由于 ,所以当 时, ,当 时, , 所 以方 程 ( 为 参 数 )表 示 的曲 线是 表 示直 线 第 3 页 共 10 页 ,故选 B. 【考点】直线的参数方程与普通方程的互化. 11.直线 为参数) 被圆 截得的弦长等于( ) A. B. C. D. 【答案】B 【解析】试题分析:由直线的参数方程 为参数 ) ,可得直线的普通方程为 ,则圆 的圆心到直线的距离为 ,所以所求弦长是 ,故选 B. 【考点】直线与圆的位置关系及圆的弦长公式. 12.设正实数 满足 ,则 的最小值为( ) A. 4 B. 5 C. 6 D. 【答案】B 【解析】 因为正实数 满足 , 所以 , 则 , 令 ,解得 ,此时函数 单调递增; 令 ,解得 ,此时函数 单调递减, 所以当 时,函数 取得最小值,此时最小值为 ,故选 B. 点睛:本题主要考查了利用导数求解函数的最值问题,其中解答中涉及到利用导数研究 函数的单调性,利用导数求解函数的最值的应用,本题的解答中根据题设条件构造新函 数 ,利用导数研究出函数的单调性是解得关键. 第 4 页 共 10 页 二、填空题 13.已知 【答案】 【解析】 由题意得,令 令 所以 ,则 ,得 , , . ,则 __________. 14.有三张卡片,分别写有 1 和 2,1 和 3,2 和 3,甲乙丙三人各取走一张卡片,甲看 了乙的卡片后说:“我与与的卡片不是 2”,乙看了丙的卡片后说:“我与丙的卡片上 相同的数字不是 1”,丙说:“我的卡片上数字之和不是 5”,则甲的卡片上的数字是 __________. 【答案】1 和 3 【解析】 根据丙的说法知,丙的卡片上写着 1 和 2 ,或 1 和 3 ; (1)若丙的卡片上写着 1 和 2 ,根据乙的说法知,乙的卡片上写着 2 和 3 ; 所以甲的说法知,甲的卡片上写着 1 和 3 ; (2)若丙的卡片上写着 1 和 3 ,根据乙的说法知,乙的卡片上写着 2 和 3 ; 又加说:“我与乙的卡片上相同的数字不是 2 ”; 所以甲的卡片上写的数字不是 1 和 2 ,这与已知矛盾; 所以甲的卡片上的数字是 1 和 3 . 15.设随机变量 的概率分布列为 ,则 __________. 【答案】 【解析】 因为所有事件发生的概率之和为 ,即 , 所以 . 点睛:本题主要考查了随机变量分布列的性质的应用,其中解答中熟记随机变量分布列 的性质 16.不等式 是解答的关键. 的解集是__________. 【答案】 【解析】 由题意得,不等式 ,等价于 ,解得 , 第 5 页 共

更多相关文章:

非常超级学习网 fccjxxw.com

copyright ©right 2010-2021。
非常超级学习网内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图