fccjxxw.com
非常超级学习网 学习超级帮手
当前位置:首页 >> 数学 >>

学案直线与椭圆位置关系学案及作业doc


课题

直线与椭圆位置关系

教学目标 : 在解题中, 将直线的方程与椭圆的方程联立, 消去一个变量后可得到一个二次方程, 控制、讨论这个方程的根,并结合根与系数关系,可以解决如下问题: 1)判断直线与圆锥曲线的位置关系(相交、相切、相离) ; 2)交点问题(公共点的个数,与交点坐标相关的等式或不等式) ; 3)计算弦长(弦长公式为 AB ? 1 ? k ? x 2 ? x1 或 AB ? 1 ?
2

1 ? y 2 ? y1 ,其中 k 为弦 k2

AB 所在直线的斜率)
4)涉及到中点弦的问题还可以采用点差法来处理. 教学过程 一、学生个人预习 题型一:直线与椭圆的位置关系: 例 1: (1)直线 y=x+m 和椭圆 4x2+y2=1,当直线与椭圆有公共点时,求实数 m 范围。

(2)若直线 y ? ? x ? m 与曲线

x2 y2 ? ? 1( y ? 0) 有一个公共点,求 m 的取值范围 20 5

x2 y2 ? ? 1 总有公共点,求实数 m 的范围. 变式:若直线 y ? kx ? 1 与焦点在 x 轴上的椭圆 5 m

1

二.小组合作探究题型二:弦长问题: 例 2: (1)已知斜率为 1 的直线 l 过椭圆 的长.

x2 ? y 2 ? 1 的右焦点交椭圆与 A、B 两点.,求弦 AB 4

x2 14 (2)过点 P(0,2)的直线与椭圆 ,求直 ? y 2 ? 1 相交于 A、B 两点,且弦长 AB ? 3 2
线方程.

(3)已知椭圆 4x2+y2=1 及直线 y=x+m,求被椭圆截得的最长弦所在的直线方程。

变式:F1 , F2 分别是椭圆 点,求 ?F2 PQ 的面积.

x2 ? ? y 2 ? 1 的左、 右焦点, F1 作倾斜角 的直线与椭圆交于 P, Q 两 过 2 3

2

三.全员合作探究

题型三:中点弦问题:
2 2

例 3:已知一直线与椭圆 4 x ? 9 y ? 36 相交于 A、B 两点,弦 AB 的中点坐标为 M(1,1) , 求直线 AB 的直线方程

练习:在椭圆中 x ? 4 y ? 16 中,求通过点(2,1)且被这点平分的弦所在的直线方程和弦长。
2 2

题型四:求椭圆方程: 例 4:中心在原点,一个焦点为 F1(0, 50 )的椭圆截直线 y ? 3x ? 2 所得弦的中点横坐标 为

1 ,求椭圆的方程 2
3

例 5:已知椭圆的中心在坐标原点 O,焦点在坐标轴上,直线 y=x+1 与椭圆相交于点 P 和点 Q, 且 OP⊥OQ,|PQ|=

10 ,求椭圆方程. 2

例 6.已知椭圆

x2 y2 6 ,过点 A(0,-b)和 B(a,0)的直线与 ? 2 =1(a>b>0)的离心率 e= 2 3 a b
3 . 2

坐标原点距离为

(1)求椭圆的方程; (2)已知定点 E(-1,0) ,若直线 y=kx+2(k≠0)与椭圆相交于 C、D 两点,试判断是否存在 k 值,使以 CD 为直径的圆过定点 E?若存在求出这个 k 值,若不存在说明理由.

4

四.达标训练
y2 1. 设直线 l :2 x +y - 2 = 0 与椭圆 x + = 1 的交点是 A, P 为椭圆上的动点, B, 则使 ΔPAB 4
2

的面积为

1 的点 P 的个数为( 2



A.1

B.2

C.3

D.4

2.直线 y ? kx ? 1(k ? R) 与椭圆 A. [1,5) ? (5,??)
2

x2 y2 ? ? 1 恒有公共点,则 m 的取值范围是 ( 5 m
C. [1,??) D. (1,5)



B. (0,5)
2

3.已知 F1 , F2 是椭圆 x ? 2 y 为_____________. 4.已知 (4,2) 是直线 l 被椭圆 A. x ? 2 y ? 0

? 2 的焦点,过 F1 作倾斜角为

? 的弦 AB,则 ?F2 AB 的面积 4

x2 y2 ? ? 1 所截得的线段的中点,则 l 的方程为 ( 36 9
C. 2 x ? 3 y ? 4 ? 0 D. x ? 2 y ? 8 ? 0



B. x ? 2 y ? 4 ? 0

x2 ? y 2 ? 1 相交于 A,B 两点,当 t 变化时, | AB | 的最大值是( 5、若直线 y ? x ? t 与椭圆 4



A 2

B

4 5 5

C

4 10 5

D

2 10 5

x2 y2 6.设 F1,F2 是椭圆 2 ? 2 =1 的左、右两个焦点,若椭圆上满足 PF1⊥PF2 的点 P 有且只有两 a b
个,则离心率 e 的值为 7.AB 为椭圆 大值为 8.已知直线 l: y ? x ? m ,椭圆 9 x ? 16 y ? 144 ,则 m 为
2 2

x2 y2 ? ? 1(a ? b ? 0) 中心弦,F2(-c,0)是其右焦点,则 ?ABF2 的面积的最 a2 b2

时 l 与椭圆相切;

m为 时 l 与椭圆相交;m 为 时,l 与椭圆相离。 9.设 AB 是过椭圆左焦点的弦,那么以 AB 为直径的圆必与椭圆的左准线
5

10.在椭圆 7 x ? 4 y ? 28 上求一点,使它到直线 l: 3x ? 2 y ? 16 ? 0 的距离最短,并求出此
2 2

距离

11.一动圆过定点 A(? 2 ,0) ,且与定圆 ( x ? 2 ) ? y ? 12 相切。
2 2

(1)求动圆圆心 C 的轨迹 M 的方程: (2)过点 P(0,2)的直线与轨迹 M 交于不同两点 E、F,求 PE ? PF 的取值范围。

x2 y2 2 12 已知椭圆 C: 2 + 2 =1(a>b>0)的一个顶点为 A (2,0) ,离心率为 , 直线 y=k(x-1) 2 a b
与椭圆 C 交与不同的两点 M,N (Ⅰ)求椭圆 C 的方程 (Ⅱ)当△AMN 的面积为

10 时,求 k 的值 3
6

7


更多相关文章:
直线与椭圆位置关系学案及作业doc
直线与椭圆位置关系学案及作业doc 隐藏>> 直线与椭圆位置关系一、椭圆方程及其几何性质 焦点在 x 轴上 x 2 2 焦点在 y 轴上 y a 2 2 标准方程 ? y b ...
直线与椭圆位置关系学案及作业doc
直线与椭圆位置关系学案及作业doc_高二数学_数学_高中教育_教育专区。基础 直线与椭圆位置关系思想方法: 思想方法:在解题中,将直线的方程与椭圆的方程联立,消去一个...
直线与椭圆位置关系学案及作业doc
直线与椭圆位置关系学案及作业doc 隐藏>> 学数学其实不过如同学习一门手艺,首先是学会模仿 直线与椭圆位置关系思想方法: 思想方法:在解题中,将直线的方程与椭圆的方...
直线与椭圆位置关系学案 总2课时 徐万山
直线与椭圆位置关系学案一、教学目标 总 1 课时 徐万山 定,利用方程根的判别式来研究直线与椭圆的各种位置关系 三、学法与教学用具 1、从观察具体的直线与椭圆...
...章圆锥曲线与方程2.2.3直线与椭圆位置关系学案含解析
河北省承德市高中数学第二章圆锥曲线与方程2.2.3直线与椭圆位置关系学案含...求此 3 椭圆的方程. 课外作 作业 一、选择题 班级:高一( )班 姓名___ 1...
空间直线与直线位置关系学案
空间直线与直线位置关系学案_数学_高中教育_教育专区。2.1.2 空间中直线与直线...作业布置】P49 1、2 2.1.2 空间中直线与直线之间的位置关系课前预习学案 ...
椭圆学案
直线与椭圆关系---学案版 2页 免费 学案6 椭圆 34页 免费 椭圆复习学案 5页...2FD ,则椭圆的离心率为 【课堂小结】 【布置作业】第 5 页共 18 页 2.2...
...的简单几何性质第二课时直线与椭圆位置关系学案含...
2.2.2椭圆的简单几何性质第二课时直线与椭圆位置关系学案含解析新人教A版选修2_120170921289 - 第二课时 直线与椭圆的位置关系 [导入新知] 1.直线与椭圆的...
高考数学(理科)一轮复习直线与圆锥曲线的位置关系学案
与圆锥曲线的位置关系学案 学案 4 直线与圆锥曲线的位置关系 导学目标: 1 了解圆锥曲线的简单应用 2 理解数形结合的思想.自 主梳理 1.直线与椭圆的位置关系的...
椭圆学案
搜试试 3 帮助 全部 DOC PPT TXT PDF XLS ...椭圆学案_高二数学_数学_高中教育_教育专区。适合...且与椭圆 9x2+4y2=36 有共同的焦点. 【作业】...
更多相关标签:

非常超级学习网 fccjxxw.com

copyright ©right 2010-2021。
非常超级学习网内容来自网络,如有侵犯请联系客服。zhit325@126.com|网站地图